Geosci. Model Dev. Discuss., 7, 659–689, 2014 www.geosci-model-dev-discuss.net/7/659/2014/ doi:10.5194/gmdd-7-659-2014 © Author(s) 2014. CC Attribution 3.0 License.



This discussion paper is/has been under review for the journal Geoscientific Model Development (GMD). Please refer to the corresponding final paper in GMD if available.

# Limiting the parameter space in the Carbon Cycle Data Assimilation System (CCDAS)

S. Kemp<sup>1</sup>, M. Scholze<sup>2</sup>, T. Ziehn<sup>3</sup>, and T. Kaminski<sup>4</sup>

<sup>1</sup>School of Earth Sciences, University of Bristol, Bristol, UK
 <sup>2</sup>Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
 <sup>3</sup>Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, VIC 3195, Australia
 <sup>4</sup>FastOpt GmbH, Hamburg, Germany

Received: 13 December 2013 - Accepted: 3 January 2014 - Published: 20 January 2014

Correspondence to: S. Kemp (sarah.kemp@bristol.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.



## Abstract

Terrestrial ecosystem models are employed to calculate the sources and sinks of carbon dioxide between land and atmosphere. These models may be heavily parameterised. Where reliable estimates are unavailable for a parameter, it remains highly un-

- <sup>5</sup> certain; uncertainty of parameters can substantially contribute to overall model output uncertainty. This paper builds on the work of the terrestrial Carbon Cycle Data Assimilation System (CCDAS), which, here, assimilates atmospheric CO<sub>2</sub> concentrations to optimise 19 parameters of the underlying terrestrial ecosystem model (Biosphere Energy Transfer and Hydrology scheme, BETHY). Previous experiments have shown that
- the identified minimum may contain non-physical parameter values. One way to combat this problem is to use constrained optimisation and so avoid the optimiser searching non-physical regions. Another technique is to use penalty terms in the cost function, which are added when the optimisation searches outside of a specified region. The use of parameter transformations is a further method of avoiding this problem, where
- the optimisation is carried out in a transformed parameter space, thus ensuring that the optimal parameters at the minimum are in the physical domain. We compare these different methods of achieving meaningful parameter values, finding that the parameter transformation method shows consistent results and the other two provide no useful results.

#### 20 **1** Introduction

25

The response of the global carbon cycle to future changes in climate is highly uncertain. It has been proposed that there is a positive climate-carbon cycle feedback that might significantly accelerate climate change; the study of Friedlingstein et al. (2006) used eleven Earth System models with an interactive carbon cycle and two simulations with each model, to isolate the feedback between climate change and the carbon cycle. All of the models showed that future climate change would reduce the efficiency of



the Earth system and in particular the land biosphere to absorb the anthropogenic carbon perturbation, with an additional  $CO_2$  of between 20 and 200 ppm between the two most extreme models by 2100. Friedlingstein et al. (2006) estimated that this rise in  $CO_2$  would lead to a further warming of 0.1 °C to 1.5 °C.

- <sup>5</sup> The sources and sinks of carbon dioxide between land and atmosphere can be calculated using terrestrial ecosystem models (TEMs). State of the art TEMs, such as the Biosphere Energy Transfer and Hydrology (BETHY) scheme (Knorr, 2000), encapsulate large numbers of biogeochemical processes and hence involve a large number of parameters. Results from TEMs can diverge markedly, indicating limited understand-
- <sup>10</sup> ing and representation of the processes involved. The study of Sitch et al. (2008) used five Dynamic Global Vegetation Models (DGVMs) to model the contemporary terrestrial carbon cycling. They coupled the DGVMs to a fast "climate analogue model" based on the Hadley Centre General Circulation Model, and ran the coupled models to the year 2100 using four Special Report Emissions Scenarios. The most extreme projections
- differed by up to 494 PgC of cumulative land uptake across the DGVMs over the 21st Century (over 50 yr of anthropogenic emissions at current levels; Sitch et al., 2008), although they remained consistent with the contemporary global land carbon budget. Furthermore, Huntingford et al. (2013) explored uncertainties of potential future carbon loss from tropical forests. They found that the DGVM response uncertainty dominated over variation between emission scenarios and climate models.

There are various sources of uncertainty within the model, for example structural uncertainty, which depends on the formulation of individual processes and their numerical representation. Another source of uncertainty is parametric uncertainty, which results from the uncertainty of the process parameter values used in the models' parameter-

isation, either due to a lack of knowledge or to upscaling to larger spatial domains. Model parameter values are commonly based on "expert knowledge". Where little information is known, this can be just an educated guess. If estimates are unavailable for a parameter, it remains highly uncertain. Uncertainty of parameters can substantially



contribute to overall model output uncertainty. In this case, parameter estimation to constrain the model against observations can be very useful.

Many parameter estimation methods, such as gradient-based, Kalman Filter, Monte Carlo inversion, Levenberg–Marquardt and genetic algorithm, use the Bayesian ap-

- <sup>5</sup> proach (Tarantola, 1987, 2005), which combines probability density functions (pdfs) of observational information, prior information and the model dynamics. Four-dimensional variational (4D-Var) schemes use the gradient of the model for the optimisation of parameters; this is usually provided by the adjoint. These approaches are generally computationally efficient but unlike some other variational data assimilation methods, for
- example the Markov Chain Monte Carlo method, it is possible to identify only a local minimum. Another weakness of 4D-Var schemes is that they concentrate only on the optimal solution without considering uncertainties. However, there are some 4D-Var schemes, such as the one used in the Carbon Cycle Data Assimilation System (CCDAS) (Rayner et al., 2005), which are able to approximate posterior parameter un certainties using the inverse of the second order derivative of the cost function with
- respect to the parameters (Hessian) at the global minimum.

Generally, Gaussian distributions are assumed for the prior probability distributions of the parameters. This is not always a good assumption as sometimes parameters are restricted to certain values; many are positive, for example and some are restricted between two values, such as a fraction between 0 and 1. Another example, is the

- <sup>20</sup> between two values, such as a fraction between 0 and 1. Another example, is the terrestrial carbon parameter  $Q_{10}$ , which regulates the response of the decomposition rate of organic material to changes in temperature and is known to be greater than 1 ("A rule of thumb widely accepted in the biological research community is that... the  $Q_{10}$  of decomposition is two" Davidson et al., 2006). Where parameters are limited to certain values, optimal solutions can contain non-physical parameter values, as has
- been seen in Koffi et al. (2012) when using CCDAS (Rayner et al., 2005) without attempting to limit the parameter space. Here, the optimal value of one of the parameters in the photosynthesis scheme was negative, which is unrealistic and would lead to a reversed photosynthesis. Kaminski et al. (2012) used, in addition, quadratic and double



bounded transformations to achieve a limited parameter space. Further, in Trudinger et al. (2007), an optimisation inter-comparison study of parameter estimation methods in terrestrial biogeochemical models, and in Fox et al. (2009), another inter-comparison project, the parameter space needed to be limited to avoid non-physical values.

<sup>5</sup> A simple method of avoiding these non-physical values would be to place hard constraints within the search algorithm. Byrd et al. (1995) described a limited memory quasi-Newton algorithm for solving large nonlinear optimisation problems, which can be applied to parameter estimation.

Alternatively, it is possible to modify the cost function formulation by adding a so called penalty term associated with some of the parameters. The penalty term is zero when the parameter is within its specified limits and increases as the parameter goes further away from these limits. This has been implemented in a study to estimate the turnover time of terrestrial carbon (Barrett, 2002). A genetic algorithm was used to improve consistency between estimated model parameters and data. All of the param ters were limited between two values and a penalty term was added whenever they violated these constraints.

A further option to avoid these non-physical values would be to alter the estimation problem by using a parameter transformation (i.e. a nonlinear change of parameters' pdfs) so that the parameter limits can never be reached. Simon and Bertino (2009) performed a twin experiment with a coupled ocean ecosystem model (HYCOM-

- (2009) performed a twin experiment with a coupled ocean ecosystem model (HYCOM-NORWECOM) with an ensemble Kalman filter (EnKf), with and without parameter transformations to limit parameters to positive values. The study compared EnKF with parameter transformations and the plain EnKf with post-processing of results, where negative values are increased to zero. These two methods led to similar results, how-
- ever, the parameter transformations had an advantage in efficiency. In this work they use the term "Gaussian anamorphosis", however, we will continue to use the term "parameter transformation".

Within CCDAS, a parameter transformation from a Gaussian prior parameter distribution to a log-normal prior parameter distribution is already routinely in use for some



selected parameters such as the  $Q_{10}$  parameters. Koffi et al. (2012) showed that the choice of prior parameter distribution can have a great effect on the parameter's uncertainty and the resulting flux field. In their experiments a log-normal pdf on prior parameters reduced the sensitivity of net CO<sub>2</sub> exchange flux (net ecosystem produc-

- tivity, NEP) to the observational network as well as the transport model. In the study, the differences in NEP between two configurations are quantified by calculating the root mean square difference (rmsd) over all the grid cells and all months in the study period. After applying the log-normal pdf, the rmsd between the observational networks went from 42 gCm<sup>2</sup> yr<sup>-1</sup> to 16 gCm<sup>2</sup> yr<sup>-1</sup>.
- <sup>10</sup> This paper builds upon the findings of Koffi et al. (2012) and systematically investigates the ability of the above mentioned three different methods to limit the parameter space within CCDAS.

The outline of the paper is as follows:

First, we give an overview of the data assimilation system and the model, going on to describe the parameter limiting methods and the experiments (Sect. 2). Section 3 describes the results and discussion. We finish with Sect. 4, providing some concluding remarks.

## 2 Methodology

CCDAS employs a terrestrial ecosystem model BETHY (Knorr, 2000) and an atmo spheric tracer transport model, along with prescribed CO<sub>2</sub> fluxes constituting land-use change, sea surface-atmosphere exchange flux and fossil fuel emission (Rayner et al., 2005; Scholze et al., 2007) that are not calculated by the BETHY model. The bio-sphere model parameters are estimated using the variational approach. The configuration of CCDAS has been comprehensively described by Scholze et al. (2003), Rayner et al. (2005) and Ziehn et al. (2011b). Here, we provide a brief summary and an expla-

et al. (2005) and Ziehn et al. (2011b). Here, we provide a brief summary and an explanation of the points where we differ.



## 2.1 Data assimilation system

There are two steps to the data assimilation in CCDAS as can be seen in Fig. 1. The first uses the full version of BETHY to assimilate space-borne remote sensing data of vegetation activity to optimise the model's phenology and hydrology. The second

5 is a simplified form of BETHY and uses the optimised leaf area index (LAI) and soil moisture fields from the full version as input.

This paper focuses on the soil carbon balance, a simplified part of the second step. This simplification of the model keeps parameters that control net primary productivity (NPP) fixed; previous studies (Rayner et al., 2005; Scholze et al., 2007) have demon-10 strated that atmospheric  $CO_2$  data constrain these parameters only moderately. The NPP parameters are calculated by an additional forward simulation covering the full 25 yr simulation period after the first step. They are then used as input, similar to soil moisture from the first step.

Posterior parameter values are obtained via iterative minimisation of a cost function J(x). The cost function yields the mismatch between the parameter vector x and their priors  $x_0$  and modelled concentrations M(x) and observations c, where each is weighted by the uncertainties  $C_{x_0}$  and  $C_c$  of the prior and the observations, respectively (Rayner et al., 2005):

$$\int_{0}^{\infty} J(\mathbf{x}) = \frac{1}{2} \left( (\mathbf{x} - \mathbf{x}_{0})^{\mathsf{T}} \mathbf{C}_{\mathbf{x}_{0}}^{-1} (\mathbf{x} - \mathbf{x}_{0}) + (M(\mathbf{x}) - \mathbf{c})^{\mathsf{T}} \mathbf{C}_{\mathbf{c}}^{-1} (M(\mathbf{x}) - \mathbf{c}) \right)$$
(1)

20

25

The formulation of the cost function uses a Bayesian approach (Tarantola, 1987, 2005) and reflects an assumption of Gaussian probability distributions on the observed concentrations and the prior information on the parameters (explained further in Ziehn et al., 2012). Minimisation of the cost function uses the gradient of J with respect to the parameters x at each iteration. Transformation of Algorithms in Fortran (TAF) (Giering and Kaminski, 1998; Kaminski et al., 2003) is used to generate derivative code from the model's source code.



At the minimum in the cost function, the Hessian approximates the inverse covariance of the parameter uncertainties (Tarantola, 1987) and can therefore be used to estimate the posterior uncertainties in the process parameters. Calculation of the Hessian is done by using TAF once more to differentiate the gradient vector in forward <sup>5</sup> mode with respect to the process parameters. Although there is a significant reduction of the cost function within a few tens of iterations, for the Hessian assumptions to hold, many more iterations are required to achieve the near zero gradient of a cost function minimum.

When using the gradient-based approach, it is possible that only a local minimum is identified. Therefore, an ensemble of optimisations is performed, with each optimisation starting in slightly varied points in parameter space. In this way, if they all converge to the same minimum, we have confidence that we have found a minimum that is more likely to be a global minimum within the physical parameter space.

Using the atmospheric tracer transport model TM2 (Heimann, 1995), calculated fluxes from BETHY are mapped onto atmospheric concentrations for comparison with measurements of observations of  $CO_2$  obtained from the GLOBALVIEW database (GLOBALVIEW-CO<sub>2</sub>, 2008). As in previous studies (Rayner et al., 2005), we are using global monthly mean atmospheric  $CO_2$  concentration data from 41 sites but here, we use data from over 25 yr (1979–2003).

As the interest of this study is the natural  $CO_2$  exchange flux between landatmosphere, the remaining fluxes contributing to the atmospheric  $CO_2$  content are added separately. We use the estimates of Houghton (2008) for the land-use flux, without seasonality or interannual variability, following the procedure of Rayner et al. (2005). The flux pattern and magnitude of ocean  $CO_2$  exchange is taken from Takahashi et al. (1000) and estimations of inter annual variability from Le Ouéré et al. (2007)

et al. (1999) and estimations of inter annual variability from Le Quéré et al. (2007). Background fluxes for fossil fuel emissions, based on the flux magnitudes from Boden et al. (2009), are described by the method of Scholze et al. (2007).



## 2.2 Terrestrial biosphere model and parameters

BETHY, a process-based model of the terrestrial biosphere (Knorr, 2000), simulates carbon uptake and soil respiration within a full energy and water balance and phenology scheme. The grid resolution of BETHY in this study is  $2^{\circ} \times 2^{\circ}$  with the global vegetation meaned ante 12 Plant Europian (PET) based on Wilson and Handerson College

<sup>5</sup> mapped onto 13 Plant Functional Types (PFT) based on Wilson and Henderson-Sellers (1985). Each grid cell can contain up to three PFTs. The amount of present PFTs within a grid cell is specified by their fractional coverage. Figure 2 represents the dominant PFT per grid cell.

In BETHY, NEP is defined as

10 NEP = NPP - 
$$R_s$$
 = NPP - ( $R_{S,s} + R_{S,f}$ )

20

25

Where  $R_{S,s}$  and  $R_{S,f}$  are respiration fluxes from the slowly and rapidly decomposing soil carbon pools. Soil respiration is simulated to be soil moisture and temperature dependent assuming the following functional dependencies:

<sup>15</sup> 
$$R_{S,f} = (1 - f_S)k_fC_f$$
 (3  
 $R_{S,S} = k_sC_S$  (4

where  $C_{\rm f}$  and  $C_{\rm s}$  represent sizes of the fast and slow carbon pool, respectively, and  $f_{\rm s}$  the fraction of decomposition from the fast pool to the long-lived soil carbon pool. The rate constants are

$$k_{\rm f} = \omega^{\kappa} Q_{10,\rm f}^{T_{\rm a}/10} / \tau_{\rm f}$$

$$k_{\rm s} = \omega^{\kappa} Q_{10,\rm s}^{T_{\rm a}/10} / \tau_{\rm s}$$
(5)

where  $\omega$  is the dimensionless plant available soil moisture, i.e. divided by the field capacity of the soil in the respective grid cell (a value between 0 and 1),  $T_a$  air temperature,  $\kappa$  a soil moisture dependence parameter,  $Q_{10,f}$  and  $Q_{10,s}$ , temperature dependence parameters for the fast and slow pool,  $\tau_f$  and  $\tau_s$  the pool turnover times at 25 °C.



(2)

A parameter can either be global or differentiated by certain criteria (in this study, PFT). In this simplified version with NPP kept fixed, there are 6 controlling parameters; five are global and one, the  $\beta$  parameter, is PFT dependent. There is an additional parameter, the offset, representing the carbon dioxide concentration at the beginning of the optimisation, giving 19 process parameters, as can be seen in Table 2. The five global parameters are  $Q_{10,f}$  and  $Q_{10,s}$ , the temperature dependence parameters for the fast and slow pool,  $\tau_{f}$  the fast pool turnover time at 25 °C,  $f_{s}$  the fraction of decomposition from the fast pool to the slow decomposing soil carbon pool and  $\kappa$  the soil moisture dependence parameter. The PFT dependent parameter  $\beta$ , described in

<sup>10</sup> Eq. (7) and in more detail in Ziehn et al. (2012), is the carbon balance parameter and determines whether a PFT is a long-term source ( $\beta > 1$ ) or sink (0 <  $\beta$  < 1):

 $\overline{\text{NEP}} = \overline{\text{NPP}}(1 - \beta)$ 

note that the vertical lines above denote the temporal average value over the full 25 yr <sup>15</sup> simulation period at each subgrid cell. The  $\beta$  parameter is strictly positive and, whilst it has no physical upper bound, it shouldn't be unrealistically large; a value of 10, for example, would indicate that locations covered by this PFT have a net flux, NEP, 9 times that of NPP as described in Ziehn et al. (2011a). Therefore, an upper bound of 2 is a reasonable selection and is the value we have chosen when bounding this parameter.

We distinguish between the physical model parameters  $p_i$  and the parameters as seen by the optimisation routine, the control variables  $x_i$ . Control variables have variance 1, in this sense, all the parameters are on the same dimensionless scale and so a change of 1 in that scale to the value of each parameter contributes equally to the

value of the cost function. Furthermore, the control variables have probability density functions assuming a Gaussian distribution, as mentioned above. To obtain the control variables and to achieve the unit uncertainty, physical parameter values are divided by



(7)

their prior standard deviation.

$$x_i = \frac{p_i}{\sigma_{p_{0,i}}}$$

#### 2.3 Limiting the parameter space

- It is not always the case that the physical parameters are distributed in a Gaussian way. For example, this gives positive probability of negative values and as mentioned, some model parameters are only physically meaningful with strictly positive values. Three methods of avoiding these non-physical parameter values are examined in this paper. Two of the methods incorporate the bounding directly into the optimisation. The first,
  constrained optimisation, seeks a solution within the physically meaningful parameter space. The second adds a penalty term to the cost function when the optimiser begins to search the non-physical domain. This encourages it to stay within the physically meaningful parameter space. The final method investigated in this paper, parameter transformations, performs the optimisation in a transformed parameter space, which
- ensures that, when back-transformed, the minimum is always in the physically meaningful parameter space. In addition to testing these three methods, we go on to investigate the effect of different parameter transformations on the inferred target quantities and their posterior uncertainties. One particular transformation, the log transformation has already been used in CCDAS and found to have a large impact on the optimised
- <sup>20</sup> parameter values and also the resulting flux fields as explained above (Koffi et al., 2012). In addition to this log-normal transformation we propose two other transformations: quadratic and double bounded log. The quadratic and log transformations are used to provide a lower bound on a parameter and the double bounded log can be used to provide an upper and lower bound on a parameter. We will examine the effect of using these different parameter transformations on parameter values and their
- <sup>25</sup> fect of using these different parameter transformations on parameter values and their uncertainties.



(8)

## 2.3.1 Constrained optimiser

When using the constrained optimisation, the optimiser can only choose from amongst a restricted well-defined set. Minimisation of the cost function is done via a gradient based algorithm updating an approximation of the Hessian through the L-BFGS-B
<sup>5</sup> method (Byrd et al., 1995; Zhu et al., 1997), which limits the control parameter space to the restricted set. This is a variant of the Davidon–Fletcher–Powell (DFP) formula (Fletcher and Powell, 1963; Press et al., 1996).

## 2.3.2 Penalty term in the cost function

For the penalty term optimisation, we use BFGS but add a penalty term to the cost function when the optimiser begins to search a non-physical region in the form of

$$J(\mathbf{x}) = \frac{1}{2} \left( (\mathbf{x} - \mathbf{x}_0)^{\mathsf{T}} \mathbf{C}_{x_0}^{-1} (\mathbf{x} - \mathbf{x}_0) + (M(\mathbf{x}) - \mathbf{c})^{\mathsf{T}} \mathbf{C}_c^{-1} (M(\mathbf{x}) - \mathbf{c}) \right) + \sum_{r=1}^{R} P_r (D_r g_r \delta_r \mu_r), \quad r = 1, \dots, R = 19 \text{ (i.e. the number of parameters)}$$

where  $D_r$  is a penalty factor that scales the penalty function,  $g_r$  is the threshold function,  $\delta_r$  invokes the penalty when the threshold is violated and  $\mu_r$  determines the sensitivity of the penalty function to threshold violation (with even, integer values).

$$P_r = D_r \delta_r g_r^{\mu_r}$$

$$g_r(\alpha_r) = (\alpha_r^* - \alpha_r)$$
(10)
(11)

Where  $\alpha_r$  is the current value of the *r*th parameter and  $\alpha_r^*$  is the threshold value, the value beyond which the threshold is violated and the penalty imposed.

 $\delta_r = \begin{cases} 1, & \text{if threshold violated} \\ 0, & \text{if threshold not violated} \end{cases}$ 



(9)

(12)

## 2.3.3 Parameter transformations

Depending on the transformation used on the parameter, different equations are used to convert them from the model parameters  $p_i$  into the control variables  $x_i$ . The equations give control variables with a variance of 1. Where no transformation is used (i.e. <sup>5</sup> the prior is assumed to have a Gaussian distribution), the parameters are just normalised using Eq. (8) as mentioned above.  $p_{0i}$  is the prior value of the *i*th model parameter and  $\sigma_{p_{0i}}$  is its prior uncertainty. As further options we have a log-normal, a quadratic and a double-bounded transformation. Minimisation of the cost function is achieved via a gradient-based algorithm updating an approximation of the Hessian through the Broyden–Fletcher–Goldfarb–Shannon formula (Fletcher and Powell, 1963; Press et al., 1996), a Quasi-Newton method.

## 2.4 Experiments

15

20

We performed a total of five experiments investigating the impact of the three parameter space restriction methods on the results of the optimisation. Table 1 provides an overview of the experiments and how they differ.

Previous experiments with this reduced version of CCDAS using no parameter transformations indicated three  $\beta$  parameters (8, 13, 18) that were either negative or extremely high, so in this paper, unless otherwise stated, they have all been limited between 0 and 2 using a double bounded log transformation. The rest of the  $\beta$  parameters have been left untransformed (i.e., assumed Gaussian), as they did not require any bounding since their posterior values already lied between 0 and 2.

To explore the effect that parameter transformations have in the model, the  $Q_{10,f}$  parameter's treatment was varied between Gaussian, Log and Quadratic, whilst keeping all but the three  $\beta$  parameters' (8, 13 and 18) treatments Gaussian. (Experiments PTG, PTL and PTQ.)

For the default penalty term optimisation, we only added a penalty term when the  $\beta$  parameter for crops (parameter 18) became negative. We chose  $D_{18} = 10^4$  as the

GMDD 7,659-689,2014 Paper Limiting the parameter space in **CCDAS Discussion** Paper S. Kemp et al. **Title Page** Abstract Introduction References Discussion Paper Figures Back Full Screen / Esc **Discussion** Paper **Printer-friendly Version** Interactive Discussion

penalty factor and  $\mu_{18} = 4$  for the sensitivity value in Eq. (10). The other two  $\beta$  parameters (8 and 13) were still transformed using the double bounded log transformation. (Experiment PEN.)

In the default constrained optimisation, the three  $\beta$  parameters (8, 13 and 18) were

 restricted between 0 and 2 by the hard limits imposed by the constrained optimiser. (Experiment CONS.)

For each of the experiments above, four extra optimisations (building together an ensemble of five optimisations) were performed with the default prior parameter values randomly perturbed by up to 10%. This ensures that if most of the optimisations converge to the same minimum we have found a robust solution.

#### 3 Results and discussion

15

We present the results of the different experiments, with a focus on the parameter transformations, as these are the experiments that successfully located a minimum within the physical parameter space. The other two methods were not successful and so are of limited use. We commence with the constrained optimisation (CONS), then briefly discuss the penalty term experiment (PEN) and finish with the results from the parameter transformations (PTG, PTL, PTQ).

CONS: here, for the default prior parameter values, the optimisation did not converge and reached the maximum number of iterations (5000). At this point there had been a significant reduction in the cost function by around a factor of 550 but the bounded parameters (8, 13, 18) were exactly at their bounds of 0 or 2. The other four ensemble members terminated after fewer iterations (10–382) without finding a minimum. There was some reduction in the cost function by between a factor of around 20 and 400 but there was still a very large gradient of at least 4000 and all of these four ensembles had negative values for the soil moisture dependence parameter,  $\kappa$ .

Since this method of limiting the parameter space was unsuccessful for this problem, uncertainties have not been calculated.



PEN: the optimisation converged but did not achieve the parameter bounding, as the limited  $\beta$  parameter (parameter 18) was slightly negative (-0.024). We performed further experiments adding a penalty to parameter 8 as well, with no successful bounding of these parameters. We also increased the penalty term by a factor of 100 but still the  $\beta$  parameter was slightly negative. Again, uncertainties have not been calculated due to the unsuccessful optimisation of the parameters.

PTG, PTL, PTQ: using the parameter transformations we were able to successfully constrain the parameter space. An overview of the optimisation results is presented in Table 2. In this case, the transformation of  $Q_{10,f}$  did not seem to have an effect on the final value of the cost function. Of the 15  $(3 \times 5)$  optimisations, 12 converged 10 to the same minimum in the cost function of J = 9667 and took between 174 and 876 iterations. The other three (one from each of the Gaussian, Log and Quadratic) converged to a different value of 9515, but were outside of the physical parameter space since another of the  $\beta$  parameters (parameter 9) was negative (-0.057), and are therefore not relevant. Having been reduced from over  $10^7$  to  $10^{-3}$ , the gradient 15 of the minimum in the cost function can be considered to be sufficiently small enough to indicate that a minimum has been located for all three parameter transformation experiments. We calculate posterior parameter uncertainties and also propagate these

2003). 20

25

5

Prior and optimised parameter values for all the parameter transformation experiments are shown in Table 3. The global parameters behave in a consistent way to previous studies (Ziehn et al., 2011a). The temperature dependence parameter of the fast carbon pool,  $Q_{10,f}$ , is somewhat reduced to 1.07 compared to its initial value of 1.5, although this change is within the range of the prior parameter uncertainty. The temperature dependence parameter of the slow pool,  $Q_{10,s}$  is increased from its initial value of 1.5 to 1.82, which again lies within the one sigma range of the parameter's

uncertainties onto the net carbon flux using a linearisation of the model (Kaminski et al.,

prior uncertainty. The two  $Q_{10}$  parameters posterior uncertainties are lowered by more



than one order of magnitude, which confirms the result of Scholze et al. (2007) that atmospheric  $CO_2$  data constrain the parameters of soil respiration relatively well.

The fast pool turnover time  $\tau_f$  is also within the prior uncertainty range of one standard deviation increasing from 1.5 to 3.46. As is the soil moisture dependence parame-

- <sup>5</sup> ter,  $\kappa$ , which is reduced from 1 to 0.57. The small posterior uncertainty of this parameter indicates that it is also well constrained by the data. The optimised parameter value of the fraction,  $f_s$ , however is outside of the prior uncertainty range, increasing from 0.2 to 0.74. It behaves similarly to previous studies (Ziehn et al., 2011a). Again, the posterior uncertainty is very small. Lastly, the offset parameter also behaves in a consistent way
- to Ziehn et al. (2011a). The posterior uncertainties for all the global parameters are reduced by over 95% compared to their prior uncertainty. This is due in part to the fact that moderately large prior parameter uncertainty values are used and is further explained by the fact that the global atmospheric CO<sub>2</sub> network strongly observes those parameters that act globally at all subgrid cells.
- <sup>15</sup> For the PFT-dependent  $\beta$  parameters, the uncertainty reduction varies between 5– 90% and so is clearly less than for the global parameters. This is partly due to the  $\beta$ parameter being differentiated by PFT, which means each PFT is less well observed by the atmospheric network.

The cost function reduction of all of the five experiments is shown in Fig. 3 up to the first 400 iterations on a log scale. By 400 iterations, all of the parameter transformations (PTG, PTL, PTQ) and the penalty term optimisation (PEN) had converged, the constrained optimisation (CONS) had not. The rest of the constrained optimisation's performance is shown inlaid in Fig. 3 on a linear scale. The majority of the cost function reduction (around 2 orders of magnitude) is within the first 30 iterations. After

<sup>25</sup> this, convergence is slower but the optimisation continues until a near zero gradient is achieved, which indicates that we have found a minimum. Only at the minimum can the inverse of the Hessian be used to estimate the posterior parameter uncertainty.

The gradient value for all five optimisations is shown in Fig. 4, again up to 400 iterations, where we can see that the parameter transformations and the penalty term



experiments have converged. The constrained optimisation has not been included up to its full 5000 iterations; it continues in much the same way after this and does not achieve a near-zero gradient.

Figure 5 shows a time-series of our target output quantity of global mean NEP, along with uncertainties. We calculated the values for all three of the parameter transformation experiments but as they are all within the same numerical limits only the Gaussian case has been shown. The global mean NEP time-series and their uncertainties resemble that of Ziehn et al. (2011b). This is because we are using exactly the same set-up with identical forcing and assimilation data.

We also show the covariance between the flux uncertainties, which, as in Ziehn et al. (2011b), we express using the uncertainty correlation matrix of diagnostics,  $\mathbf{R}_{d}$ , defined as follows:

$$\mathbf{R}_{d}^{i,j} = \frac{C_{d}^{i,j}}{\sigma_{i}\sigma_{j}}$$

<sup>15</sup> Where  $C_d^{i,j}$  is element *i*, *j* of the error covariance matrix of global net CO<sub>2</sub> exchange flux (NEP) per year and  $\sigma_i$  the posterior uncertainty of parameter *i* obtained from the diagonal element  $C_d^{i,i}$  of the matrix  $C_d$ . For global NEP for the Gaussian case this uncertainty correlation matrix is shown in Fig. 6. Again there is no significant difference between the transformations as can be seen in Fig. 7, which shows the differences in the uncertainty correlation matrix between Gaussian and Log and Gaussian and Quadratic.

## 4 Conclusions

We systematically investigated the effects of different methods of limiting the parameter space, which is an emerging issue in parameter optimisation studies. In our simplified set-up of CCDAS, we saw that two of the methods were not successful; both



(13)

25

the constrained and the penalty term optimisation had values outside of the physically meaningful parameter space and in fact, the former did not converge to a minimum at all. Parameter transformations however, were successful in locating an optimal solution within the limits. All of the physically meaningful ensembles converged to the same minimum, so we can be confident that this is the global minimum. We tested two parameter transformations against standard scaling and found that these three experiments all reached the same minimum, indicating that the transformation does not alter the optimisation problem. This is in contrast to the study of Koffi et al. (2012) however

10 İ

15

25

5

interest may involve systematically investigating parameter transformations within the fully complex model. In our experience, we would therefore recommend the parameter transformations as

we note that in this study a more complex system was used. A future experiment of

the most suitable solution to the problem of limiting parameter spaces. As the parameter transformations are applied outside of the optimisation routine this would be a good general method for any problem involving restricted parameter sets. As for CCDAS, the

quadratic transformation is slightly preferred to the log as it may have a lower range for the number of iterations required to achieve convergence.

## 5 Code availability

For obtaining the code, please contact M. Scholze (marko.scholze@nateko.lu.se).

#### 20 **References**

Barrett, D. J.: Steady state turnover time of carbon in the Australian terrestrial biosphere, Global Biogeochem. Cy., 16, 1108, doi:10.1029/2002GB001860, 2002.

Boden, T. A., Marland, G., and Andres, R. J.: Global, regional, and national fossil-fuel CO<sub>2</sub> emissions, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn., doi: 10.3334/CDIAC/00001. 2009.



677

- Byrd, R. H., LU, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 1190–1208, 1995.
- Davidson, E. A. and Janssens, I. A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440, 165–173, 2006.
- <sup>5</sup> Fletcher, R. and Powell, M. J. D.: A rapidly convergent descent method for minimization, Comput. J., 6, 163–168, 1963.
  - Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife, T., Ricciuto, D., Reichstein, M., Tomelleri, E., Trudinger, C. M., and Van Wijk, M. T.: The REFLEX project: Comparing different algorithms and implementations for the investion of a terres-
- trial ecosystem model against eddy covariance data, Agr. Forest Meteorol., 149, 1597–1615, doi:10.1016/j.agrformet.2009.05.002, 2009.
  - Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-
- G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zengq, N.: Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison, J. Climate, 19, 3337–3353, 2006.
  - Giering, R. and Kaminski, T.: Recipens for adjoint code construction, ACM Trans. Math. Software, 24, 437–474, 1998.
- <sup>20</sup> GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project-Carbon Dioxide [CD-ROM], NOAA, Boulder, Colo, 2008.
  - Heimann, M.: The Global Atmospheric Tracer Model TM2, Technical Report, 10, Deutsches Klimarechenzentrum, Hamburg, Germany, 1995.
  - Houghton, R. A.: Carbon flux to the atmosphere from land-use changes: 1850-2005, in
- <sup>25</sup> TRENDS: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn, 2008.
  - Huntingford, C., Mercado, L. M., Harris, P.P., Zelazowski, P., Galbraith, D., Malhi, Y., Sitch, S., Lewis, S. L., Phillips, O. L., Lloyd, J., Gloor, E., Fisher, R., Lomas, M., Walker, A. P., Jones, C. D., Booth, B. B. B., Hemming, D., Kay, G., Good, P., Betts, R., Atkin, O. K.,
- Meir, P., Zaragoza-Castells, J., Nobre, C., Marengo, J., and Cox, P. M.: Simulated resilience of tropical rainforests to CO<sub>2</sub> -induced climate change, Nat. Geosci., 6, 268– 273. doi:10.1038/ngeo1741, 2013.



- Kaminski, T., Giering, R., Scholze, M., Rayner, P., and Knorr, W.: An example of an automatic differentiation-based modelling system, in: Computational Science, ICCSA 2003, International Conference Montreal, Canada, Lecture Notes Comput. Sci., vol. 2668, edited by: Kumar, V., Gavrilova, L., Tan, C. J. K., and L'Ecuyer, P., 95–104, Springer, New York, 2003.
- Kaminski, T., Rayner, P. J., Voßbeck, M., Scholze, M., and Koffi, E.: Observing the continentalscale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design, Atmos. Chem. Phys., 12, 7867–7879, doi:10.5194/acp-12-7867-2012, 2012.

Knorr, W.: Annual and interannual CO<sub>2</sub> exchanges of the terrestrial biosphere: process based simulations and uncertainties, Global Ecol. Biogeogr., 9, 225–252, 2000.

Knorr, W. and Heimann, M.: Uncertainties in global terrestrial biosphere modeling: 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme, Global Biogeochem. Cy., 15, 207–225, 2001.

Koffi, E. N., Rayner, P. J., Scholze, M., and Beer, C.: Atmospheric constraints on gross primary productivity and net ecosystem productivity: results from a carbon-cycle data assimilation

system, Global Biogeochem. Cy., 26, GB1024, doi:10.1029/2010GB003900, 2012.
Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J., Langenfelds, R., Gomez, A., Labuschagne, C., Ramonet, M., Nakaza, T., Metzl, N., Gillett N., and Heimann, M.: Saturation of the Southern Ocean CO<sub>2</sub> sink due to recent climate change, Science, 316, 1735–1738, doi:10.1126/science.1136188, 2007.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical Recipes in FORTRAN 77: The Art of Scientific Computing, Cambridge Univ. Press, New York, 1996.

Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R., and Widmann, H.: Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global Biogeochem. Cy., 19, GB2026, doi:10.1029/2004GB002254, 2005.

Biogeochem. Cy., 19, GB2026, doi:10.1029/2004GB002254, 2005.
 Scholze, M.: Model studies on the response of the terrestrial carbon cycle on climate change and variability, Ph. D. thesis, Max Planck Inst. für Meteorol., Hamburg, Germany, 2003.
 Scholze, M., Kaminski, T., Rayner, P., Knorr, W., and Giering, R.: Propagating uncertainty through prognostic carbon cycle data assimilation system simulations, J. Geophys. Res.,

<sup>30</sup> 112, D17305, doi:10.1029/2007JD008642, 2007.

10

15

20

Simon, E. and Bertino, L.: Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment, Ocean Sci., 5, 495–510, doi:10.5194/os-5-495-2009, 2009.



- Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I. C. and Woodward, F. I.: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) Global Change Biol., 14, 2015–2039, doi:10.1111/j.1205.0400.0009.01000.w. 0000
- <sup>5</sup> doi:10.1111/j.1365-2486.2008.01626.x, 2008.
- Takahashi, T., Wanninkhof, R. H., Feely, R. A., Weiss, R. F., Chipman, D. W., Bates, N., Olafsson, J., Sabine, C., and Sutherland, S. C.: Net sea-air CO<sub>2</sub> flux over the global oceans: an improved estimate based on the sea-air pCO<sub>2</sub> difference, Paper presented at 2nd International CO<sub>2</sub> in the Oceans Symposium, Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan, 18–23 January, 1999.
- Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, New York, 1987.

Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, Soc. for Ind. and Appl. Math., Philadelphia, Pa, 2005.

- <sup>15</sup> Trudinger, C. M., Raupach, M. R., Rayner, P. J., Kattge, J., Liu, Q., Pak, B., Reichstein, M., Renzullo, L., Richardson, A. D., Roxburgh, S. H., Style, J., Wang, Y. P., Briggs, P., Barrett, P., and Nikolova, S.: OptIC project: An intercomparison of optimization techniques for parameter estimation in terrestrial biogeochemical models, J. Geophys. Res., 112, G02027, doi:10.1029/2006JG000367, 2007.
- <sup>20</sup> Wilson, M. F. and Henderson-Sellers, A.: A global archive of land cover and soil data for use in general circulation climate models, J. Climatol., 5, 119–143, 1985.
  - Ziehn, T., Knorr, W., and Scholze, M.: Investigating spatial differentiation of model parameters in a carbon cycle data assimilation system, Global Biogeochem. Cy., 25, GB2021, doi:10.1029/2010GB003886, 2011a.
- Ziehn, T., Scholze, M., and Knorr, W.: Development of an ensemble-adjoint optimization approach to derive uncertainties in net carbon fluxes, Geosci. Model Dev., 4, 1011–1018, doi:10.5194/gmd-4-1011-2011, 2011b.
  - Ziehn, T., Scholze, M., and Knorr, W.: On the capability of Monte Carlo and adjoint inversion techniques to derive posterior parameter uncertainties in terrestrial ecosystem models,
- <sup>30</sup> Global Biogeochem. Cy., 26, GB3025, doi:10.1029/2011GB004185, 2012.
  - Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large scale bound constrained optimization, ACM Trans. Math. Softw., 23, 550–560, 1997.







## **Table 1.** Experiments performed to investigate the impact of different methods of limiting the parameter space on the optimisation.

| Experiment                                                      | Default set-up: No Parameter Transformation of $Q_{10,f}$ (Gaussian) | Parameter Transformation of $Q_{10,f}$ (Log) | Parameter Transformation of $Q_{10,f}$ (Quadratic) | Constrained                          | Penalty Term                         |
|-----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------------------|
| Optimiser used                                                  | BFGS                                                                 | BFGS                                         | BFGS                                               | L-BFGS-B                             | BFGS                                 |
| Parameters treated with a Pa-<br>rameter Transformation         | 8,13,18: double bounded log                                          | 8,13,18: double bounded log                  | 8,13,18: double bounded log                        | none                                 | 8,13: double bounded log             |
| Treatment of $Q_{10,f}$ in Parameter Transformation experiments | No transformation (assum-<br>ing Gaussian PDF)                       | Logarithmic transformation                   | Quadratic transformation                           | none                                 | none                                 |
| Parameters Constrained                                          | none                                                                 | none                                         | none                                               | 8,13,18: constrained between 0 and 2 | none                                 |
| Parameters with a Penalty Term added                            | none                                                                 | none                                         | none                                               | none                                 | 18: penalty term added when negative |
| Abbreviation                                                    | PTG                                                                  | PTL                                          | PTQ                                                | CONS                                 | PEN                                  |

| Table 2. Values of the cost function, the contributions from data and parameters, the gradient,    |
|----------------------------------------------------------------------------------------------------|
| the number of iterations to achieve convergence and how many optimisations from the ensem-         |
| ble of 5 converged to this value for the different parameter transformations of $Q_{10,f}$ and the |
| constrained and penalty term experiments.                                                          |

|                                                     | Parameter Treatment Used for Q <sub>10,f</sub> |                      |                        | Constrained | Penalty term          |
|-----------------------------------------------------|------------------------------------------------|----------------------|------------------------|-------------|-----------------------|
|                                                     | Gaussian                                       | Log                  | Quadratic              |             |                       |
| Value of the Optimised Cost Function                | 9666.8                                         | 9667.0               | 9666.9                 | 9613.6      | 9639.0                |
| Data Contribution                                   | 9584.3                                         | 9584.3               | 9584.3                 |             | 9571.                 |
| Parameter Contribution                              | 82.5                                           | 82.7                 | 82.6                   |             | 67.1                  |
| Final Gradient Value                                | 2.3 × 10 <sup>-3</sup>                         | $1.6 \times 10^{-4}$ | 1.2 × 10 <sup>-3</sup> | 49.8        | 5.2 × 10 <sup>2</sup> |
| Number of Iterations                                | 224                                            | 319                  | 365                    | 5000        | 154                   |
| Range of Number of Iterations                       | 174–876                                        | 319–595              | 232–478                | 10-5000     | 154–208               |
| Number of Optimisations That Successfully Converged | 4                                              | 4                    | 4                      | 0           | 0                     |



| Parameter Initial Value |     | Optimised Value |         | Initial Uncertainty | Percentage Reduction in<br>Uncertainty |        |
|-------------------------|-----|-----------------|---------|---------------------|----------------------------------------|--------|
|                         |     | Gaussian        | Log     | Quadratic           | -                                      |        |
| 1 Q <sub>10 f</sub>     | 1.5 | 1.069           | 1.069   | 1.069               | 0.75                                   | 97.899 |
| 2 Q <sub>10 s</sub>     | 1.5 | 1.817           | 1.816   | 1.816               | 0.75                                   | 97.492 |
| $3 \tau_{\rm f}$        | 1.5 | 3.435           | 3.436   | 3.435               | 3.0                                    | 95.993 |
| 4 κ                     | 1   | 0.571           | 0.571   | 0.571               | 9.0                                    | 99.877 |
| 5 f <sub>s</sub>        | 0.2 | 0.735           | 0.735   | 0.735               | 0.2                                    | 98.073 |
| $6 \beta$ (TrEv)        | 1   | 0.796           | 0.796   | 0.796               | 0.25                                   | 93.387 |
| 7 $\beta$ (TrDec)       | 1   | 0.926           | 0.926   | 0.926               | 0.25                                   | 82.999 |
| 8 $\beta$ (TmpEv)       | 1   | 0.29            | 0.29    | 0.29                | 0.25                                   | 37.231 |
| 9 $\beta$ (TmpDec)      | 1   | 0.037           | 0.037   | 0.037               | 0.25                                   | 79.889 |
| 10 β(EvCn)              | 1   | 1.272           | 1.272   | 1.272               | 0.25                                   | 90.774 |
| 11 $\beta$ (DecCn)      | 1   | 0.325           | 0.325   | 0.325               | 0.25                                   | 51.785 |
| 12 $\beta$ (EvShr)      | 1   | 0.196           | 0.196   | 0.196               | 0.25                                   | 61.899 |
| 13 $\beta$ (DecShr)     | 1   | 1.913           | 1.913   | 1.913               | 0.25                                   | 48.949 |
| 14 β(C3Gr)              | 1   | 1.485           | 1.485   | 1.485               | 0.25                                   | 88.468 |
| 15 β(C4Gr)              | 1   | 1.129           | 1.129   | 1.129               | 0.25                                   | 90.508 |
| 16 $\beta$ (Tund)       | 1   | 0.876           | 0.876   | 0.876               | 0.25                                   | 79.816 |
| 17 $\beta$ (Wetl)       | 1   | 2.211           | 2.211   | 2.211               | 0.25                                   | 4.9    |
| 18 β(Crop)              | 1   | 0.066           | 0.066   | 0.066               | 0.25                                   | 54.095 |
| 19 offset               | 338 | 336.421         | 336.421 | 336.421             | 1.0                                    | 95.099 |

**Table 3.** Controlling parameters and their initial and optimised values for each parameter treatment of  $Q_{10,f}$  and their initial uncertainty and reduction in uncertainty after the optimisation.





Fig. 1. CCDAS structure. Top arrows indicate the parameters to be optimised and the observational data used in the various steps.



**Fig. 2.** Distribution of the dominant Plant Functional Type (PFT) per grid cell, taken from Rayner et al. (2005).



**Fig. 3.** Cost function value for all five experiments in log scale for the first 400 iterations and cost function value for constrained optimisation from 400 to 5000 in linear scale (dark blue: Gaussian, green: log, red: quadratic, light blue: constrained, purple: penalty).



**Fig. 4.** Gradient value for all five experiments in log scale up to 400 iterations (dark blue: Gaussian, green: log, red: quadratic, light blue: constrained, purple: penalty).

| <b>GM</b><br>7, 659–6     | <b>GMDD</b><br>7, 659–689, 2014             |  |  |  |
|---------------------------|---------------------------------------------|--|--|--|
| Limiti<br>paramete<br>CCI | Limiting the<br>parameter space in<br>CCDAS |  |  |  |
|                           |                                             |  |  |  |
| Title                     | Title Page                                  |  |  |  |
| Abstract                  | Introduction                                |  |  |  |
| Conclusions               | References                                  |  |  |  |
| Tables                    | Figures                                     |  |  |  |
| 14                        | ►I.                                         |  |  |  |
| •                         | •                                           |  |  |  |
| Back                      | Close                                       |  |  |  |
| Full Scre                 | Full Screen / Esc                           |  |  |  |
| Printer-friendly Version  |                                             |  |  |  |
| Interactive Discussion    |                                             |  |  |  |
| CC O                      |                                             |  |  |  |

**Discussion** Paper

**Discussion Paper** 

Discussion Paper

**Discussion Paper** 

Fig. 5. Time series of global mean net ecosystem productivity (NEP) with posterior uncertainty.







Fig. 7. Differences in the uncertainty correlation matrices of the Gaussian prior and of the (a) log and (b) quadratic.